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Galectin-1: A bifunctional regulator
of cellular proliferation
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Galectin-1 has demonstrated a diverse range of activities in relation to cell survival and proliferation. In different cir-
cumstances, it acts as a mitogen, as an inhibitor of cell proliferation, and as a promoter of cellular apoptosis. Many of
these activities, particularly the mitogenic and apoptotic responses, follow from the interaction of galectin-1 with cell-
surface β-galactoside ligands, but there is increasing evidence for protein-protein interactions involving galectin-1, and
for a β-galactoside-independent cytostatic mechanism. The bifunctional nature of galectin-1, in conjunction with other
experimental variables, makes it difficult to assess the overall outcomes and significance of the growth-regulatory actions
in many previous investigations. There is thus a need for well-defined experimental cross-correlation of observations,
for which specific loss-of-function galectin-1 mutants will be invaluable. Unsurprisingly, in view of this background, the
interpretation of the actions of galectin-1 in developmental situations, both normal and neoplastic, is often very complex.
Published in 2004.
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Introduction: Galectin-1 in mitogenesis and apoptosis

Like other lectins, the galactose-binding protein now known as
galectin-1 was shown, soon after its discovery, to be an effec-
tive mitogen for a range of animal cell types, including spleen
cells, lymphocytes and various vascular cells [1–3]. The mito-
genic activity of galectin-1 has been seen as having therapeutic
potential. A galectin-1 homologue, electrolectin, from the elec-
tric eel, displayed an immunomodulatory role in experimental
autoimmune myasthenia gravis in rabbits [4], and recombinant
human galectin-1 has been shown to have a similar effect on
cell-mediated immunity in encephalomyelitis in rats [5]. In both
of these cases the lectin appeared to act as a mitogen for some
classes of lymphocytes.

Principal targets for galectin-1 binding on lymphocytes are
cell-surface glycoproteins with β-galactose residues in the gly-
can sidechains [6]. These antigenic glycoproteins include CD3,
CD4, CD7, CD43 and CD45. CD3 is implicated in signalling,
by elevation of cytoplasmic calcium ions, following interac-
tion with the T-cell receptor [7], and a similar response follows
from galectin-1 binding to Jurkat T lymphocytes [8]. CD45 is
now known to be a tyrosine phosphatase [9], and it has been
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suggested that inhibition of this enzyme by galectin-1 may
increase phosphorylation of the Lyn tyrosine kinase, reduce ki-
nase activity, and inhibit signal transmission in lymphoma cells
[10]. Galectin-1-mediated signal transmission in Jurkat lym-
phocytes is inhibited by a tyrosine kinase inhibitor, and involves
mobilisation of second messengers from phosphatidylinositol
4,5-bisphosphate [11]. Galectin-1 also activates the ERK/MAP
kinase system, in lymphocytes and in hepatic stellate cells
[12,13]. These reports suggest that galectin-1 may have both
positive and negative effects on signalling kinases. Reporter
gene expression in response to galectin-1 indicates that, in lym-
phocytes, the AP-1 (activator protein-1) and NFAT (nuclear fac-
tor of activated T cells) transcription factors are activated. This
effect is inhibitable by galactosides, and leads to interleukin-2
expression by the cells [14].

A totally new dimension to this field was introduced when it
was observed that galectin-1 could cause apoptosis in activated
lymphocytes [15]. This reaction is caused by β-galactoside-
dependent binding to CD45 and other cell-surface glycopro-
teins, and was first demonstrated with relatively high concen-
trations (20 µM) of galectin-1. Apoptosis may represent the
outcome of signalling via an alternative branch of the sig-
nalling pathway(s) initiated by CD3 or CD45 [9,16], but a
recent report indicates that CD45-deficient lymphocytes are
still stimulated to apoptosis by galectin-1 [17]. Characteristic
pre-apoptotic responses, such as inhibition of expression of the
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Bcl-2 protooncogene, and caspase activation, are seen in the
response of human T lymphocytes to added or endogenously-
generated galectin-1 [18]. Many other instances of galectin-
1-mediated apoptosis are known, as recently reviewed [19].
The role of galectins as immunomodulators has also been re-
cently reviewed [20]. In several of the early demonstrations
of mitogenesis, there was evidence for inhibition of the mito-
genic response at supra-optimal concentrations of galectin-1.
Though this phenomenon may simply represent a reduced abil-
ity of bivalent galectin-1 to cross-link cell-surface receptors as
galectin-1 binding approaches saturation, it raised the possibil-
ity of growth-inhibitory actions of galectin-1 on animal cells.
However, given that, in many cases, net cellular growth may be
the aggregate effect of cellular proliferation minus apoptosis,
then the apoptotic response to galectin-1 could contribute to ap-
parent growth-inhibitory effects, if it has not been specifically
excluded by appropriate investigations.

Galectin-1 as a cellular proliferation inhibitor

Independent evidence for the growth-inhibitory activity of
galectin-1 was discovered when galectin research was in its
infancy, though the identification of the responsible protein as
galectin-1 was not established for another ten years. An au-
tocrine growth inhibitor, produced and secreted by mouse fi-
broblasts, was first reported by Wells and Mallucci [21]. It in-
hibited the mouse cell cycle at the S/G2 phase transition. The
identity of the protein was not discovered until the correspond-
ing mouse gene was cloned, and shown to be homologous to
the human galectin-1 gene [22]. A recombinant form of this
mouse galectin-1 (mGBP) was shown to have the same growth-
inhibitory activity, which did not appear to depend upon its
β-galactoside-binding properties. This latter finding was con-
firmed when it was shown that the rmGBP was not in fact a
functional lectin, being already complexed with an endogenous
glycan from the COS cells which expressed it [23]. It should
also be noted that mGBP was shown to be active as a growth
inhibitor at very low concentrations (0.3–30 nM) [22,24]. This
is well below the K D for dissociation of galectin-1 dimers [25],
so it is not unreasonable to regard the monomeric mGBP as
being in some respects functionally different from dimeric and
bivalent galectin-1 [26].

Wells et al. have more recently demonstrated production of
mGBP by activated murine T cells, and its role as an autocrine
growth inhibitor for these cells [26]. Leukaemic T cells dif-
fered from normal lymphocytes in that they were also sub-
ject to apoptosis, by a Bcl2/Bax-dependent pathway, follow-
ing growth arrest by mGBP [27]. Expression of interferon-γ
receptor polypeptides, stimulated by mGBP, may render lym-
phocytes susceptible to apoptosis in response to interferon-γ
[28]. In the case of human mammary carcinoma cells treated
with mGBP, apoptosis followed cell cycle arrest, though only
after a delay of 2–4 days. Three cell lines, differing with respect
to tumourigenicity and to the expression of oestrogen and EGF

receptors, all demonstrated the same S/G2 cell cycle block in
response to mGBP [24]. It is not clear if the apoptosis described
in these cases, which follows from a β-galactoside-independent
action of mGBP, occurs by a similar mechanism to the apoptotic
responses seen by Baum et al., and others, which are depen-
dent upon much higher galectin concentrations and also upon
binding to a β-galactoside ligand, as already discussed in the
previous section [9,15,16,20].

The lability of the mGBP suggested the possibility that it
might be a substrate for a proteinase. Degradation of a neg-
ative growth regulator is one hypothetical mechanism for the
action of an endogenous growth-promoting cellular proteinase
[29,30]. Some circumstantial evidence to support this hypoth-
esis was obtained with human cells. A 14 kDa β-galactoside-
binding protein was isolated from human fibroblast-conditioned
medium by affinity chromatography. Yields of the protein were
very low, but were increased in cultures treated with proteinase
inhibitors. The purified protein acted as a fibroblast growth in-
hibitor in the 0.1–0.7 µM concentration range, although growth
stimulation was observed when bovine corneal endothelial cells
were treated in the same concentration range [31].

To pursue this line of enquiry, a source of recombinant
galectin-1 was needed. Human galectin-1 cDNA from an os-
teosarcoma cell line was amplified by PCR, and cloned into
the pGEX vector, for bacterial expression as a glutathione-S-
transferase (GST) fusion protein. This vector and expression
system was chosen for reasons of convenience, but fortuitously
provided additional evidence for a growth-inhibitory site on
galectin-1. The galectin-1 was C-terminal in the fusion protein,
and was liberated by proteolytic cleavage with thrombin. Both
the fusion protein and the free galectin-1 had lectin activity,
with identical agglutination titres against trypsinised rabbit ery-
throcytes. In contrast, fibroblast growth inhibition was detected
only with the free galectin-1, and not with the fusion protein, a
clear indication that β-galactoside binding and growth inhibi-
tion were independent functions of the protein [32]. Cytotoxic-
ity testing indicated that apoptosis was not occurring, though if
it lagged behind the growth-inhibitory effect, as was seen with
mGBP and human mammary tumor cells [24], it might not have
been detected.

This recombinant galectin-1 preparation displayed a biphasic
action on human fibroblasts, with a mitogenic effect, maximal
at 70 nM concentration, and inhibitory action at higher con-
centrations. The mitogenic response was inhibited by lactose,
but not the growth-inhibitory effect. In the inhibitory concen-
tration range, it was effective against U2 OS osteosarcoma and
HEP2 carcinoma cells, but not against HeLa carcinoma cells.
However, there were also some serious limitations inherent in
the PGEX-specified galectin-1. Most seriously, the specific ac-
tivity of the protein was low, requiring concentrations about
15 times higher than those of natural human galectin-1 to give
identical growth-inhibiting effects. In addition, the yields of
GST-galectin-1 were low, due to poor solubility, and mutated
or truncated GST-galectin-1 variants were even less soluble and
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correspondingly more difficult to produce in useful amounts
[32,33].

Two approaches were used to confirm the separate existence
of β-galactoside-binding and growth-inhibitory sites. One of
these was to create, or recreate, galectin-1 mutants in which the
β-galactoside-binding activity was absent or reduced, and to
measure their growth-inhibitory action. Tertiary structure deter-
mination and mutagenesis studies have suggested that histidine-
45, asparagine-47, arginine-49, tryptophan-69, glutamate-72
and arginine-74 are all involved in, or influence, sugar bind-
ing [34–37]. In addition, the observations made with the GST-
galectin-1 offered some clues to the location of the growth-
inhibitory site itself, which were used to choose additional sites
for mutagenesis [33]. The N- and C-termini of the monomer
are located close together, on the opposite side of the structure
from the galactose-binding site, forming part of the “dimerisa-
tion interface” for the self-association of two monomers [35].
It seemed probable that the growth-inhibitory site would be
close to, but not within this region, as deduced from the steric
restriction of growth-inhibitory activity by the GST domain at-
tached to the N-terminus of galectin-1 in the fusion protein.
Surface loops of the galectin-1 structure, which were located
close to this interface, were chosen as targets for site-specific
mutagenesis.

Despite the limitations imposed by N-terminal extension of
the recombinant GST-derived galectin-1, it was considered ap-
propriate to create another “tagged” fusion protein expression
system, so that mutants could be purified in the absence of
binding to a β-galactoside affinity matrix. The ProEx bacterial
expression system was selected, which produced a fusion pro-
tein with a hexahistidine sequence and linker peptide (13 amino
acid residues) at the N-terminus. This permitted the purification
of fusion proteins by nickel ion chelation chromatography [38].
The otherwise-unmodified hexahis-galectin-1 was an effective
lectin (endpoint in haemagglutination titre 70 nM). More im-
portantly, it was active as a growth inhibitor (I50 for growth
inhibition: 0.3 µM), and at least 15-fold more effective than
the recombinant galectin-1 cleaved from GST-galectin-1, and
was thus active in approximately the same concentration range
as the natural galectin-1. This GST-derived galectin-1 retained
a dipeptide extension at the N-terminus, whereas the hexahis-
galectin-1 had a 13-residue extension. These findings indicate
that the chemical nature of the extensions may have a greater ef-
fect on growth-inhibitory activity than their size, though a very
large extension, such as the entire GST molecule, is clearly
inhibitory [32,33]. The concentration range for the growth-
inhibitory effect overlaps that seen previously for mitogenic
activity with GST-derived galectin-1, which indicates that the
growth-inhibitory effect is dominant.

Arginine-49 is located in the S4 β-strand [39], and has been
shown to interact with the 4-hydroxyl of the galactose residue,
in the three-dimensional structures proposed by Bourne et al.
and Liao et al. [35,39]. The R49G mutant galectin-1 was thus
expected to show reduced or altered lectin activity, but in fact

it was not significantly different from that of the normal re-
combinant galectin-1 (haemagglutination endpoint 70 nM). The
D47N mutation, also in the S4 β-strand, has been previously re-
ported as lectin-negative [37], and was in this case a very weak
lectin (haemagglutination endpoint 7 µM), but the yields of sol-
uble protein were too low to carry out further characterisation
of either of these mutants.

The P79R mutation was not expected to be deficient in β-
galactoside-binding. It is relatively distant from the galactose-
binding site, in a conserved, surface loop between the S6 and
F3 β-strands, and it was surprising that it was almost totally
devoid of lectin activity (haemagglutination endpoint 34 µM).
This could have been caused by disruption of tertiary structure,
but it did retain full antiproliferative activity (I50 0.3 µM). This
is a clear confirmation that the galactose-binding and growth-
inhibitory sites of galectin-1 are largely or wholly independent.
This conclusion was confirmed by our experience with a C131S
mutation. This is located close to the dimerisation interface, in
the F1 surface β-strand (F1). It was produced in low yield, and
was totally devoid of lectin activity, but retained most of the
growth-inhibitory activity (I50 0.9 µM) of the normal protein.
The loss of haemagglutination activity was shown to be due
to disruption of the β-galactoside binding site, as dimerisation
was unaffected [33]. An earlier analysis of a C131S substitution
found a relatively normal β-galactoside binding activity [37].

Preliminary investigations identified the A28R muta-
tion in the F2-S3 surface loop as having greatly reduced
growth-inhibitory activity. This observation prompted fur-
ther mutational substitutions in this region of galectin-1.
The K29M mutation retained its galactose-binding activity
(haemagglutination endpoint 70 nM), but it had totally lost
its ability to inhibit fibroblast growth. The K29T mutant, with
a less radical substitution, had the same haemagglutination
titre, but was equally devoid of growth-inhibitory activity,
and a D27N mutant also demonstrated full lectin activity, but
very low growth-inhibitory activity (I50 11 µM). The region
of the F2-S3 loop containing A27-K29 is within 8–10 Å of
the N-terminus of normal galectin-1. This is consistent with
the effect of N-terminal modifications on growth-inhibitory
activity. An M1R fusion protein was expressed in high
yield, and was fully functional as a haemagglutinin, but
was totally devoid of growth-inhibitory activity. Thrombin
treatment cleaved the 14-residue hexahis-linker-R1 region.
The resulting protein retained haemagglutinin activity, and had
also recovered growth-inhibitory activity, though not to the
same extent as the wild-type galectin-1 (I50 1.6 µM; [33]). The
Figure 1 shows the part of the protein (region c) that has been
demonstrated to have a role in the growth-inhibitory activity.
The β-galactoside-binding site (region a), and the dimerisation
interface (region b) are also indicated. This identification
of a growth-inhibitory site is still somewhat tentative, since
physically-distant mutational substitutions are also known to
affect growth-inhibitory activity. The D103A mutation was
located in a surface loop, connecting adjacent antiparallel
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Figure 1. Location of active sites within the galectin-1 struc-
ture. This figure is reproduced from Scott and Zhang, BMC
Cell Biology 2002, 3:3. (http://www.biomedcentral.com/1471-
2121/3/3). It represents the three-dimensional shape of the
galectin-1 dimer. The three shaded boxes indicate regions in-
volved in glycan binding (a), dimerisation (b), and cellular growth
inhibition (c).

β-strands (F4-F5), and distant from regions a and c. This sub-
stitution did not appear to affect the lectin function of galectin-1
(haemagglutination endpoint 70 nM), but growth-inhibitory
activity was somewhat reduced (I50 1.3µM). Unequivocal iden-
tification of the growth-inhibitory site waits upon the molecular
identification of the molecule, presumably a protein, which
interacts with it. This may be possible using a β-galactoside-
negative galectin-1 mutant as an affinity ligand, analogous to the
method used to isolate CD45 from lymphocyte membranes with
natural galectin-1 [10]. What does seem beyond doubt, even at
this stage, is that “galectin-negative” (“GN”) and “proliferation-
negative” (“PN”) mutants of galectin-1 can be readily created.

Murine galectin-1, as mGBP, is apparently a much more ef-
fective growth inhibitor than the human homologue [22,31,33].
Of eleven amino acid differences between the respective se-
quences [40], only serine-26 (proline in murine galectin-1) is
close to the proposed growth-inhibitory site, and S26P would
be a good candidate for future mutagenesis studies on human
galectin-1. Murine-human galectin-1 chimaeras could be more
effective growth inhibitors for human cells, but it is equally
possible that mouse cells may have a higher-affinity receptor
for the growth-inhibitory site. It is also possible that there is
another, as yet unidentified, part of the galectin-1 structure that
contributes to the growth-inhibitory site, and which is different
in murine galectin-1.

Oxidation of galectin-1 has been reported to create a molec-
ular variant in which disulphide bonds are formed, and lectin
activity is lost. In this form, human galectin-1 can promote
axonal regeneration in rat neurites at very low concentrations

(optimal at about 30 pM; [41]), and promoted neuronal repair
in a subsequent in vivo study [42]. In an earlier report, a rat
galectin-1 variant, purified from virally-transformed cells, acts
as a “transforming growth factor”, causing the acquisition of a
transformed phenotype which included loss of anchorage de-
pendence, reduced contact inhibition, colony formation in soft
agar and tumor formation in nude mice [43]. The mitogenic ac-
tivity for mouse fibroblasts was optimal at about 0.3 µM. This
protein was also devoid of lectin activity, and contained two
intramolecular disulphide bonds [44]. There is no information
available on the region of the galectin-1 molecule responsible
for these activities. It is tempting to speculate that these activ-
ities may be related to the non-lectin-dependent properties of
galectin-1 reported by Wells and Mallucci, and Scott and their
respective co-workers. A recent report indicates that an associa-
tion between intracellular galectin-1 and the H-Ras oncoprotein
promotes membrane localisation of the latter, and concomitant
cell transformation, in human and rodent cells [45], but there
is as yet little evidence to link this intracellular event with the
extracellular actions of secreted galectin-1. Recent work in this
area indicates that the Ras-galectin-1 association may influence
the choice of intracellular signalling pathway to which Ras ac-
tivation is coupled. This phenomenon thus has the potential to
convert a proliferative response to Ras into other responses,
such as survival, senescence or apoptosis [46].

Autocrine galectin-1 enhances the proliferation of human
vascular smooth muscle cells. The nature of this response was
investigated with a recombinant GST-galectin-1 fusion protein.
This protein was not in itself mitogenic, but enhanced DNA
synthesis in the presence of serum when adsorbed to the cell
substratum. This may represent an effect mediated through cell-
extracellular matrix (ECM) links; galectin-1 binds to α1β1 and
α7β1 integrins, as well as to several other ECM proteins. It
was noteworthy that galectin-1 binding to the ECM was en-
tirely inhibited by lactose, but its binding to the cell was only
partly inhibited by lactose, indicating the possibility of multiple
cellular binding sites for galectin-1. Galectin-1 also mediates
cross-talk between the cell surface and the ECM, modulating
cell adhesion and morphology, rearrangement of actin filaments
and assembly of the ECM [47–49]. The fusion protein with the
GST domain N-terminal to the galectin-1 moiety may not be
ideal for experiments of this type, as has already been discussed.

A sialidase active on cell-surface gangliosides regulates the
proliferation of a human neuroblastoma cell line in a mechanism
involving galectin-1. Removal of terminal sialic acid from the
glycolipid gangliosides exposes a terminal β-galactose residue,
and binding of galectin-1 brings about cellular growth inhibi-
tion, in a manner that has been likened to density-dependent
growth inhibition. Sialidase inhibition results in a failure to
create galectin-1 binding sites, and consequent loss of growth
inhibition [50]. This is noteworthy as a cytostatic activity,
with no evidence for apoptosis. These workers have gone on
to show that galectin-3 can bind to the same sites, but does
not result in growth inhibition. This was ascribed to differing
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topologies of galectin binding, but could represent the effect of
a site present on galectin-1, but not on galectin-3 [51]. The ef-
fects of sialidase inhibition could also influence apoptosis, for
which an analogous modulatory response has been identified.
Sialylation of terminal galactosyl residues of T cell glycopro-
teins, by a transferase, may regulate susceptibility to apoptosis
[52].

Neurostatin, a glial cell growth inhibitor purified from
rat brain extracts, is a galactose-containing glycosphingolipid
which is immunochemically related to the glycan side-chains
of some cell-surface proteins. It has been suggested that it may
mediate cell-cell contact and density-dependent growth inhi-
bition by interaction with selectins or other lectins [53]. It
may have functional similarities to the cell-surface, growth-
regulatory gangliosides from neuroblastomas [50,51].

In macrophages, endogenous galectin-1 inhibits the gener-
ation of nitric oxide by the action of nitric oxide synthase on
arginine, and also promotes arginine hydrolysis by arginase.
These antiproliferative reactions are inhibitable by lactose [54].

Galectin-1 resembles growth-regulatory agents such as trans-
forming growth factor β in having both positive and negative
effects [55]. Another resemblance is the fact that galectin-1
acts as a differentiation factor. It has recently been reported
that murine and human dermal fibroblasts begin to differen-
tiate into myoblasts following growth arrest in response to
galectin-1 [56,57]. This activity complements the known role of
galectin-1 as a mediator of integrin-dependent myocyte-matrix
binding during muscle differentiation [58]. A morphologically-
similar differentiation of a rat embryonic cell line, induced in
response to the FosB oncogene, correlates with the expression
of galectin-1 with an eight-residue N-terminal truncation [59].
Galectin-1 has also been implicated in the differentiation of
erythroid cells [60]. Development of mature B cells depends
upon the binding of the pre-B cells to stromal cells to form
a synapse. The surrogate light chain of the pre-B cell recep-
tor forms a protein-protein interaction with galectin-1 bound to
galactosyl residues on stromal glycoproteins. This interaction
promotes intracellular tyrosine kinase activity and signal trans-
mission with the pre-B cell, leading to cell maturation [61].
This is clearly a different phenomenon from CD3 and CD45-
mediated signalling, discussed in the first section. It provides
further evidence for a galactose-independent binding site within
galectin-1, but there is as yet no evidence to link it to the growth-
inhibitory site.

These latter observations invite comparison with proteins
which combine a lectin-like functional domain with another,
cell-regulatory domain. Bifunctional lectins, in which the lectin
domain may serve to specify and localise the site of action of
the regulatory domain, have been reviewed [62,63]. Several of
the known cytokines are molecules with this potential (e.g. in-
terleukins 1α, 1β, 2, 3, 4, 6 and 7, and tumor necrosis factors
α and β [64]).

Specific roles for galectin-1 in normal development and dif-
ferentiation are consistent with observations of its differential

expression and localisation during development [13,65,66].
Tumor cell differentiation is discussed in the next section.

Galectin-1 and tumor development

Having considered some cases of the involvement of galectin-1
in tumor cell proliferation, the question of the wider signifi-
cance of galectin-1 in tumor development is inevitably raised.
This topic is considered by other contributors to this volume,
but some aspects relate to the actions of galectin-1 already dis-
cussed here.

Malignant cell transformation results in changes in the pat-
tern and composition of surface molecules including carbohy-
drate structures [67], and it also enhances the expression of
galectins [68]. Galectins seem to be key factors implicated in
the processes of malignant transformation and metastasis in
a variety of gastrointestinal tumors, including stomach, hep-
atocellular and colon cancer, but also in human and murine
breast tumors, head and neck cancers, prostate carcinomas, thy-
roid and skin cancers, ovarian carcinomas and astrocytomas
[20].

Metastatic pancreatic cells exhibit moderate to strong
galectin-3 immunoreactivity but have been shown to be neg-
ative for galectin-1. Strong immunostaining for galectin-1 was
observed in most fibroblasts in the stromal strains of desmoplas-
tic tissue in and around the pancreatic cancer mass but not in the
pancreatic cancer cells. Messenger RNA and protein analysis
of galectin-1 revealed its low abundance in the normal pancreas
[69]. Significantly higher levels of galectin-3 have been found in
gastric and hepatocellular cancer compared to normal mucosa
cells or normal hepatocytes [70,71]. It is believed that, through
its apoptotic immunomodulatory properties, galectin-1 could
give pancreatic cancer cells the possibility of escape from the
cellular immune response while its overexpression in fibrob-
lasts could be responsible for the remodelling of the extracellu-
lar matrix in the formation of the desmoplasmic reaction. In this
situation, galectin-3 may be an alternative mediator of cancer
cell proliferation.

Several studies of colon cancers showed significantly higher
levels of galectin-1 and galectin-3 in comparison to the nor-
mal mucosa, and their overexpression was associated with ad-
vanced tumor stages and poorer prognosis for patient survival
[72–74]. In colorectal mucosa, galectin-1 is also predominantly
a stromal product and its overexpression is associated with the
neoplastic progression of colorectal cancer [74]. On the other
hand, studies of 55 colon carcinomas using immunohistochem-
ical galectin fingerprinting suggested that galectins-1, -3 and -4
may be involved in the early stages of human colon carcinoma
development, and that galectin-8 is involved in the later stages
[75]. In contrast, Lotz et al. [76] report finding that galectin-
3 levels decrease in colon cancer progression, whilst Hittelet
et al. [77] report that galectin-1 association with colon cancer
is rare. These contradictory reports might be explained by the
well-known genetic heterogeneity of tumor cells [78].
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Immuno- and lectin-histochemistry studies of galectin-1 and
-3 in routinely-fixed sections of two tumor types with poor
patient prognosis (neuroblastoma and small lung carcinoma)
showed that galectin-3 was frequently present, as opposed to
results of tumor tissue culture studies. The presence of galectin-
1, as inferred from cytoplasmic staining, coincided with the
proliferative activity of tumor cells [79]. A higher tendency
toward overexpression of galectin-1 and -3 was found in less
differentiated cancer samples [69].

The analysis of the galectin-1 gene expression in two nor-
mal thyroid cell lines (FRTL-5 and PC CL3) and in the same
cells following transfection with a range of oncogenes that in-
duced different degrees of malignancy and differentiation, has
shown that galectin-1 mRNA levels correlated with the expres-
sion of the malignant phenotype [80]. A recent investigation
of expression of galectin-1 and -3 during fetal thyroid devel-
opment showed that the absence of galectin-3 from the thyroid
cells during fetal development meant that this lectin was ex-
pressed “de novo” during malignant transformation of thyroid
epithelium, whilst galectin-1 could be considered an oncofetal
antigen [81]. Expression of galectin-1 has been shown to be up-
regulated in thyroid carcinoma-derived cell lines compared to
the normal primary cultures and adenoma cells [82]. Galectin-1
at high levels was observed in all thyroid malignancies of ep-
ithelial origin tissue, in contrast to normal thyroid and benign
thyroid adenomas [83]. High galectin-1 levels were found in
papillary carcinomas but not in follicular adenomas or normal
tissue [83–86].

In an extension of their work on galectin-1 as a “transforming
growth factor,” discussed above [43,44], Yamaoka et al. [87]
showed that the expression of galectin-1 mRNA correlates with
the malignant potential of human gliomas and that expression
of antisense galectin-1 inhibits cell growth in an experimental
rat glioma model. Furthermore, galectin-1 has been found to
be strongly expressed in human gliomas and to significantly
modulate tumor astrocyte migration in vitro [88]. The authors of
this paper felt the need to add a cautionary note, to the effect that
the simultaneous expression of other members of the galectin
family might exert additive or neutralizing effects to the above-
mentioned effects of galectin-1.

High grade astrocytic tumors with high levels of galectin-1
expression were shown to be associated with poor patient prog-
nosis [89]. The levels of galectin-1 and -3 expression were
found to change during the progression of malignancy in the tu-
mor. Analysis of xenografts from brains of nude mice revealed
a higher galectin-1 expression in invasive areas of xenografts
than in non-invasive ones. On the other hand, mice grafted with
cells expressing low levels of galectin-1 due to stable trans-
fection of an antisense RNA of galectin-1 had longer survival
periods compared to mice grafted with cells expressing nor-
mal levels of galectin-1. Addition of galectin-1 to culture me-
dia increased cell motility levels in human neoplastic astro-
cytes [89]. These effects are believed to be due to modifica-
tions in the organization of the cytoskeleton and increase in

small GTPase RhoA expression (the modulator of actin poly-
merisation/depolymerisation). This results in higher migratory
capabilities and increased aggressiveness of tumor astrocytes.

This situation invites comparison with earlier work, from
which it has been suggested [68] that the increased expression
of lectins by malignant and metastatic cells might play a role
in the metastatic process, by mediating cellular recognition and
adhesion in organ implantation. In this view, galectin-1 might
act both as a lectin, favouring cell adhesion and as a negative
growth factor on responsive adjacent cells to facilitate tumor
cell invasion. There is data suggesting that galectin-1 might
participate in melanoma cell adhesion to laminin, and in this
way could modulate invasion and metastasis [90].

Galectin-1 expression has been found to be increased in ad-
vanced human uterine adenocarcinoma cells, compared to nor-
mal endometrium [91], and also accumulates in the peritumoral
stroma associated with carcinoma of the ovary, affecting can-
cer cell proliferation and adhesion to laminin-1 and fibronectin
[92]. The same high expression of galectin-1 is found in high
grade bladder tumors compared to normal bladder cells or low
grade tumors [93]. In primary prostate carcinoma samples,
galectin-1 has also been shown to accumulate in the stroma and
associated fibroblasts, but not in intra-epithelial neoplasia or
carcinoma cells. Its levels of expression correlated with the ag-
gressiveness of the tumor [94]. Galectin-1 was found to affect
matrix mineralization in the osteoblastic response to prostate
cancer cells metastasizing into bone [77].

Contrastingly, in renal cell carcinomas, an increase in tumor
aggressiveness seemed to be paralleled by a decrease in the
level of expression of galectin-1 binding sites rather than by a
decrease in galectin-1 expression [95]. HeLa cells which ex-
pressed the ovarian cancer antigen CA125 (a giant mucin-like
glycoprotein) have been shown to have tenfold more galectin-1
on their surface than non-tumor derived CA125-deficient CHO
cells, despite similar galectin-1 expression levels and total bind-
ing capacities. It was suggested that CA125 might be involved
in the cellular export of galectin-1 [96].

Recent studies, comparing the plasma membrane proteomes
of fibroblasts and mammary carcinoma cells, showed that one of
the proteins in the “metastatic signature” of the invasive MDA-
MB-435 breast carcinoma cells is galectin-1 [97]. Galectin-
1 had been shown to mediate the adhesion of MDA-MB-435
breast carcinoma cells to human endothelial cells, which is a
key route for capillary invasion and metastatic spread [98]. The
observation that galectin-1 is unique to the plasma membrane
proteome of invasive carcinoma cells further supports the con-
nection between this lectin and metastasis. In contrast, com-
parative proteome analysis of human normal (BEAS 2B) and
malignant (A 549) lung epithelial cells revealed that galectin-1
expression was decreased rather than increased in the malignant
phenotype [99]. Decreased levels of galectin-1 and galectin-1
reactive sites apparently correlate with an increased level of
clinically-detectable aggressiveness of head and neck squamous
carcinomas (HNSCC) [100], but, in another report, galectin-1
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expression patterns correlate with the degree of squamous dif-
ferentiation in HNSCC [101].

Because galectin was shown to stimulate the growth of vas-
cular endothelial cells [3], it might be possible that it facilitates
angiogenesis in tumors in which cells have lost sensitivity to
galectin inhibition.

Expression profiling of immortalized human mammary lu-
minal epithelial cells and variants expressing a moderate and
high level of erb B2 showed that, out of 6,000 genes anal-
ysed, 61 genes were either up or down-regulated. Differentially-
regulated genes included those involved in cell-matrix interac-
tions among which were also galectin-1 and -3 [102]. Galectin
fingerprinting in 61 human tumor cell lines of different ori-
gin (brain, breast, colon, kidney, lung, skin, hematopoieic
and urogenital systems) by RT-PCR shows that human tumor
cells express mRNA species for other galectins in addition
to galectins-1 and -3 [103]. The interpretation of results
of experiments in which galectin-1 and -3 are investigated
can be unequivocal only when the involvement of other
galectins with overlapping or antagonistic functions can be
excluded.

The majority of the evidence suggests that galectin-1 does
not generally act as a tumor cell growth inhibitor, but there are
some contrary indications, in addition to those already cited.
Histone deacetylase inhibitors, including n-butyrate and (R)-
trichostatin A, induce the expression of galectin-1 in human
colon carcinoma and other tumor cells. This results in sup-
pression of cellular proliferation and of the transformed phe-
notype, enhancement of cell differentiation and, in some cases,
increased apoptosis [104,105]. The role of galectin-1 has been
confirmed, because transfection with a galectin-1 expression
vector leads to the same series of events [106].

Summary and conclusions

A variety of growth-regulatory phenomena have now been as-
cribed to galectin-1. There are some apparent inconsistencies,
but this is not entirely surprising, given the range of experi-
mental techniques, cell types and galectin-1 preparations which
have been used. Nevertheless, some generalisations can be
made about the several types of cell growth-regulatory effects.
Some of these depend upon an interaction with a cellular β-
galactoside ligand, and we can distinguish ligands such as the
CD3 and CD45 glycoproteins in lymphocytes, and integrins or
other proteins involved in cell-ECM links. Both types of ligand
are linked to growth-regulatory signalling pathways, but the for-
mer may promote either a mitogenic or a cytostatic response, or
alternatively lead to growth inhibition followed by apoptosis.
In normal cells, stimulation or stasis seems the most common
outcome, whereas stasis and eventual apoptosis seems to be
favoured in activated lymphocytes, and in some transformed
or tumor cells. The interactions with integrins and related
proteins seem to depend upon galectin-1 intervention in cell-
cell or cell substratum contacts, and have a largely cytostatic
outcome.

There is also strong evidence for cell growth-regulatory
effects, which are independent of β-galactoside binding. A sep-
arate site on galectin-1 can interact with an as-yet unknown
ligand, to inhibit proliferation of many normal and some tumor
cell types. It is not clear if this pathway can also lead to apopto-
sis, or if apoptosis is a separate consequence of a simultaneous
or subsequent β-galactoside-dependent reaction. At least one
other case of a regulatory protein-protein interaction, involving
galectin-1, is known.

It should now be possible to make some cross-correlations
between different experimental systems. Even in cases where
effects are apparently due entirely to the interaction of galectin-
1 with β-galactosides, it would be worthwhile to test the effects
of both “GN” and “PN” galectin-1 mutants.

Comparisons of the influences of galectin-1 expression on
tumor aetiology are similarly complicated by variations in tu-
mor type and experimental approach. Many tumor cells are
clearly resistant to the effects of galectin-1 on their growth and
survival, and the cell-adhesive properties of the lectin may be
more significant, particularly for metastasis, but there is some
evidence that galectin-1-mediated growth inhibition or apop-
tosis in surrounding tissues may influence tumor growth and
metastasis. Again, this is an area where loss-of-function mu-
tants of galectin-1 may have some application. There are indi-
cations that galectins-1 and -3 are coordinately regulated, and
may cooperate in modulating cancer cell proliferation, and there
is a need for further studies in this area. Other galectins may
interfere with the actions of galectin-1 and -3, and galectin-
binding sites may influence both the function and availability
of galectins, and need to be considered in parallel with the
lectins themselves.
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